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SUMMARY

The material point method (MPM) uses unconnected, Lagrangian, material points to discretize solids, #uids
or membranes. All variables in the solution of the continuum equations are associated with these points; so,
for example, they carry mass, velocity, stress and strain. A background Eulerian mesh is used to solve the
momentum equation. Data mapped from the material points are used to initialize variables on the
background mesh. In the case of multiple materials, the stress from each material contributes to forces at
nearby mesh points, so the solution of the momentum equation includes all materials. The mesh solution
then updates the material point values. This simple algorithm treats all materials in a uniform way, avoids
complicated mesh construction and automatically applies a noslip contact algorithm at no additional cost.
Several examples are used to demonstrate the method, including simulation of a pressurized membrane and
the impact of a probe with a pre-in#ated airbag. Copyright ! 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid-membrane systems are quite common and include parachutes, vehicle airbags, high-speed
magnetic tapes, printing presses, in#atable structures, pressure transducers, blood vessels, and
bladder tanks. These systems are especially di$cult to model numerically when the structural
response is non-trivial (e.g. not rigid) and, in turn, has an e!ect on the #uid. A typical method of
achieving #uid}membrane or, more generally, #uid}structure simulation is to couple a #uids code
with a structures code [1}5]. The procedure involves embedding a Lagrangian structure in an



Eulerian mesh used to calculate the #uid dynamics. The intersection of the structure and the
Eulerian mesh is calculated, and the appropriate boundary conditions are imposed on each mesh.
The necessity of de"ning the intersection of the two meshes usually accounts for a signi"cant
amount of the analysis run time. Also, large di!erences in the wave speed of the #uid and solid
may lead to ine$ciency in explicit codes unless special techniques are used to cycle one material
domain multiple timesteps during a single timestep of the other.

Arbitrary Lagrangian}Eulerian (ALE) methods have also been used for #uid}structure interac-
tion [6}14]. In the ALE method the mesh can have an arbitrary velocity. In many cases it is
convenient to pick the structure mesh velocity to be the material velocity and transition the mesh
associated with the #uid from Lagrangian close to the structure to Eulerian far from the structure.
This method generally a!ords a less complicated approach to describing the #uid}structure
interface than the coupling of separate codes, but the meshes and their motion must be chosen
carefully for good performance.

Particle, element-free, and meshless methods have been receiving considerable attention
recently, as evidenced by special issues of journals [15, 16]. One such method is the material point
method (MPM). The MPM has evolved from a particle-in-cell (PIC) method called FLIP
originally developed at Los Alamos National Laboratory for #uid dynamics problems [8, 9]. The
basic formulation of the MPM has been described by Sulsky et al. [10}12] which also show
applications to materials having strength and sti!ness. This paper describes an extension of the
method to model the interaction of #uids and membranes. The MPM for membranes alone has
been previously described by York et al. [13].

With MPM, a mesh of Lagrangian material points is used to discretize one or more solid
bodies, membranes or #uid. The material points have mass and velocity and carry stress and
strain, which may be history dependent. The interaction of the material points is calculated on
a background Eulerian or spatial "nite element mesh on which the momentum equation is solved.
Material point quantities are updated from the solution on the Eulerian mesh with mapping
functions.

The advantages of both Lagrangian and Eulerian methods are realized in the MPM. Mesh
distortion and entanglement are not a problem as it might be with Lagrangian schemes since the
background mesh is under user control and can be rede"ned each time step if desired. Advection
of history-dependent variables is straightforward since the variables are de"ned on material
points which themselves advect through the Eulerian mesh. Thus, numerical dissipation normally
associated with an Eulerian method is avoided.

The advancement reported here is the straightforward treatment of the interaction between the
surfaces of the #uid and the membrane which is done with a simple algorithm. Buijk [2] reports
that most of the CPU time for a #uid}structure simulation is used to determine the intersection of
the Lagrangian membrane elements and the Eulerian elements.This step is avoided when using
the MPM for #uid}structure interaction calculations. Material points, solid and #uid, carry
stress. The stress results in internal forces at nearby grid nodes. The momentum equation is solved
at the grid nodes taking into account the internal forces from all nearby materials. On boundaries
between the #uid and the structure, the internal forces in mixed solid}#uid elements determine the
interface conditions. Materials within the same computational element at a given timestep will see
the same increment in strain, but can have di!erent stress because each material point follows its
own constitutive equation.

The basic ideas presented here are somewhat similar to the immersed boundary method used
by Peskin in simulating blood #ow through the human heart [17, 18] and the related immersed

902 A. R. YORK II, D. SULSKY AND H. L. SCHREYER

Copyright ! 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:901}924



interface method of LeVeque and Li [19]. Peskin immerses massless Lagrangian points, chained
together to form the heart surface, in an incompressible #uid. The #uid is represented only on an
Eulerian mesh. As with our method, the Lagrangian points do not have to coincide with the grid
node points of the mesh. Forces from their connected neighbours are computed at each
Lagrangian point and interpolated to the mesh to provide constraints on the #uid motion in
#uid}structure interactions. The points then move in the computed velocity "eld. Instead of
interpolating forces to the grid, LeVeque and Li use the position of the interface, given by the
connected Lagrangian points, to alter the "nite di!erence scheme by incorporating jump condi-
tions at the interface in order to derive a second-order accurate method [19]. In the MPM both
the structure and the #uid are represented by unconnected Lagrangian points that are treated the
same with the exception of constitutive relations that relate stress to strain or strain rate.

There are several advantages inherent to the MPM for simulation of #uid}structure interac-
tion. The time step constraint for the explicit method is a function of the mesh size and not of the
spacing between material points. There has been no additional restriction observed in the time
step when performing calculations with #uids and structures as has been reported in some
methods [20}22]. No-slip contact is automatic and is provided at no additional computational
cost. Meshing is also simpli"ed over many methods since all that is required is unconnected
points placed on a membrane surface or placed to "ll a volume of #uid or solid. The background
mesh does not have to conform to surfaces, and surfaces do not have to be meshed in the
usual way.

The governing and discrete equations for solids have been discussed previously [10}12]. These
equations and the additional equations necessary for the simulation of compressible, viscous
#uids are reviewed in Section 2. The methodology for the #uid}membrane coupling is presented
in Section 3 along with the constitutive relations for solids, membranes, and compressible #uids.
To date, only elastic membranes have been simulated. The theory in these sections is presented in
general, however the numerical examples, included in Section 4, are performed with a two-
dimensional implementation of the method. First, a #uid-only, shock-tube problem is presented
as a test of the algorithm for compressible #uids. Next, three examples of simulations involving
#uid}membrane interaction are discussed. A one-dimensional piston-container problem tests the
interaction of #uid and solid in the MPM. A more stringent, two-dimensional test is presented
next, where a pressurized membrane with complicated geometry is allowed to expand to its
equilibrium circular shape. The last example is a simulation of a probe impacting an in#ated
airbag where comparison is made of the MPM results, a similar "nite element calculation and
experiments. Finally, concluding comments are presented in the last section.

2. EQUATIONS OF MOTION

Motion of a continuum is governed by conservation of mass, momentum and energy. A region of
#uid or a solid body occupies a volume !

%
initially and !

!
at later times. (Membranes occupy

a surface rather than a volume.) For the current position x3!
!
at time t, let " (x, t) be the mass

density, v (x, t) be the velocity, # (x, t) be the Cauchy stress tensor, and b(x, t) be the speci"c body
force in the current con"guration. The conservation of mass equation is

"$ "!%" ) v (1)
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Figure 1. Mesh of Lagrangian material points representing the domain of interest
overlaid on the computational mesh.

where the superposed dot represents the material time derivative, and %( ) is the gradient with
respect to the current con"guration. Conservation of linear momentum is given by

% ) ##"b""a (2)

in which a"v$ is the acceleration. Finally, conservation of energy can be written

"e$ "# : &$ (3)

with e being the speci"c internal energy and

&$ "!
#
[(%v#(%v)&] (4)

denoting the strain rate. Fluids and solids are distinguished by the constitutive equation relating
the stress to strain or strain rate. Speci"c constitutive models will be given in the next section.
Initial conditions and boundary values complete the speci"cation of the continuum problem.

In the material point method, the material in !
%

is discretized by dividing it up into material
elements, a material point is placed in each element, and the point is assigned a mass based on the
volume of the element and the initial material density (Figure 1). The mass assigned to a material
point is kept "xed throughout the computation, insuring global mass conservation. Other initial
properties of the material, like velocity, stress, strain or energy are also assigned to the material
points, as appropriate for a given problem. Instead of solving the equations of motion on the
material point mesh, the momentum equation is solved on a background Eulerian mesh, chosen
to cover the domain !

!
. This background mesh provides a convenient means to de"ne discrete

derivatives, and keeps the computational work linear in the number of material points. The
source data for the solution of the momentum equation on the Eulerian mesh come from the
material points.

2.1. Spatial discretization of the governing equations

In the following development all variables with a subscript i or j reference grid values, and
variables with subscript p-represent material point values. Equation (2) can be discretized as
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described previously [10}12] which results in a governing equation at each grid node of the
Eulerian mesh. This equation takes the form

"#

!
$'!

m
%$
a
$
"f int

%
#f ext

%
, i"1, . . . ,N

#
(5)

where m
%$

is the consistent mass matrix, a
$
is the acceleration at node j, f int

%
and f ext

%
are the internal

and external forces at node i, and N
#

is the number of grid nodes. To de"ne the mass matrix,
introduce nodal basis functions N

%
(x), then the mass matrix is

m
%$
" "&

!
&'!

m
&
N

%
(x

&
)N

$
(x

&
) (6)

where m
&

is the mass of material point p and N
&

is the total number of material points. In this
work, the mapping N

%
(x) is given by bilinear nodal basis functions used routinely in the "nite

element method. The consistent mass matrix is replaced by the diagonal form simplifying
Equation (5) at the expense of introducing a slight amount of numerical dissipation [23] to give

m
%
a
%
"f int

%
#f ext

%
, i"1, . . . , N

#
(7)

where the diagonal components of the mass matrix are

m
%
"!

&

m
&
N

%
(x

&
), i"1, . . . , N

#
(8)

Equation (7) can be recast into momentum form as

dp
%

dt
"f int

%
#f ext

%
, i"1, . . . , N

#
(9)

where p
%
"m

%
v
%
is the momentum, and i ranges from one to the number of grid nodes. The

external forces are problem speci"c and are handled as in many methods. The internal forces are
computed from the divergence of the stress; an explicit formula is given below.

2.2. ¹ime-integration algorithm

The discrete equations are to be solved at a discrete set of time steps, t', k"1, . . . ,K. The
superscript k indicates an approximation at time level k so that, for example, m'

%
is the approxima-

tion to m
%
(t'). The momentum equation is solved using an updated Lagrangian frame. If we use

an explicit integration of Equation (9) to "nd the change in momentum, 'p
%
, the momentum for

node i at the end of the Lagrangian step is

p(
%
"p'

%
#'p

%
"p'

%
#'t (f int,k

%
#f ext,k

%
) (10)
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where 't"t')!!t'. Note that the grid mass, m'
%
, depends on time due to the movement of

material points through the grid; however, through the Lagrangian step de"ned in Equation (10)
the grid mass is constant. The momentum, p'

%
, in Equation (10) is determined from a mass-

weighted mapping of material point velocities, v'
&
, to the grid nodes

m'
%
v'
%
" "&

!
&'!

m'
&
v'
&
N

%
(x'

&
) (11)

The material point velocity and position are updated using typical "nite element nodal basis
functions that map the grid node values of velocity and acceleration to the material points

v')!
&

"v'
&
# "#

!
%'!

'p
%
N

%
(x'

&
)/m'

%
(12)

x')!
&

"x'
&
# "#

!
%'!

'tp(
%
N

%
(x'

&
)/m'

%

The strain increment '&
&

at a material point is computed from the grid node velocities

'&')!
&

"'t
2

"#

!
%'!

[G'
%&

v')!
%

#(G'
%&

v')!
%

)&] (13)

where

G'
%&

v')!
%

"%(v')!
%

N
%
(x) (

*'*'
&

(14)

is the gradient of the grid velocity evaluated at x
&
, and the grid velocity v')!

%
is determined using

Equation (11). Care must be taken in evaluating Equation (14) to include the spatial variation of
the basis vectors, for example in using axisymmetric cylindrical co-ordinates in two-dimensions
[12]. The strain increment for the material point is used in the constitutive model to update the
material point stress. Constitutive equations are discussed in the next section.

The material point stresses are combined directly to compute the internal forces at the grid
nodes. The gradient of the nodal basis function, G'

%&
, yields the stress divergence

f int,k

%
"!!

&

m
&

"'
&

G'
%&

#'
&

(15)

where the quotient of material point mass and density, m
&
/"'

&
, is the volume of material point p,

and #'
&

is the stress at material point p. The value of "'
&

is updated from the continuity equation

"')!
&

""'
&
/(1#tr ('&')!

&
)) (16)

where tr is the trace.
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Figure 2. Fluid}structure coupling.

3. FLUID}MEMBRANE INTERACTION

It is proposed that #uid}structure interaction problems be simulated with the MPM. The idea is
straightforward in that the coupled problem is set-up as any other type of MPM simulation. The
di!erence is that some material points are designated structure or membrane material points and
others are designated #uid material points. The initial mass of membrane material points is
determined from the input membrane density (mass per unit area), the input membrane thickness
and the user-speci"ed point spacing. The e!ect of the #uid on the structure and vice versa will be
determined on the grid when the momentum equation is solved at each grid node. The coupling of
the #uid and structure is indirect in the sense that the pressure from a #uid material point is not
directly applied to the neighbouring structure material points. Instead, the forces from #uid and
solid material points are calculated together at grid nodes where the divergence of the material
point stress is summed.

Equation (17) and Figure 2 symbolically show accumulation of the grid forces from #uid
(subscript &f ') and membrane (subscript &m') material points

f
%
J!

+

(% ) #
+
)<

+"&
#!

,

(% ) #
,
)<

,"&
(17)

using the #uid and membrane stresses, #
+

and #
,
, and the respective material point volumes,

<
+"&

and <
,"&

.
The net e!ect of the force summation is that the grid forces cause accelerations of neighbouring
#uid and structure material points. The velocity of the interface of the #uid and structure is the
same, and there is no penetration of the #uid into the structure. This no-slip feature is automatic
since Equation (12) moves the material points in a continuous velocity "eld obtained by solving
the momentum equation. The continuity of the velocity "eld implies that material points at the
same location move together. There is also no penetration, even with discrete time steps, if the
usual Lagrangian time step condition is satis"ed, that an element not fold during the step. Since
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the mesh is under user control, this is almost never a limiting condition. For example, in this
paper every step is started from a square mesh. For a slip condition on the boundary special
measures must be taken. Similar treatments have been made to account for friction conditions
between materials in the context of solid mechanics and, in principle, can apply to #uid}solid
interfaces [24]. Slip conditions are not addressed in this paper.

Since Lagrangian material points are used for both the #uid and the structure and since the two
are indirectly coupled, the time-consuming calculations involved in de"ning the interface and
applying the correct boundary conditions are avoided. Also, mixed elements are handled
naturally as the material points carry material properties with them. The following sections
discuss the various constitutive equations applied to the material points.

3.1. Solid constitutive equation

The mechanical response of solids can be quite varied, from elastic to plastic to viscoelastic or
viscoplastic. Any of these responses can be implemented in the MPM framework. For example,
the constitutive equation for an elastic or inelastic solid can be written in rate form as

%
#"T : &$ (18)

where the strain rate, &$ (x, t), is the symmetric part of the velocity gradient given in Equation (4),
and T is the tangent modulus tensor. In all the simulations reported here, ¹ is the conventional
fourth-order elasticity tensor since only materials with linear elastic properties are considered.
The left-hand side of Equation (18) denotes an objective stress rate; the Jaumann rate is used in
this work since it is easy to implement and the strains are not that large.The existing approach in
the MPM for solid materials is to calculate the strain increment '&

&
at a material point from the

grid node velocities, according to Equation (13). The stress at a material point is updated by
discretizing Equation (18) in a frame indi!erent formulation. For the Jaumann rate

#')!
&

"#'
&
#'t (#'

&
) W'

&
!W'

&
) #'

&
)#¹ :'&')!

&
(19)

where the vorticity is

W'
&
"1

2
"#

!
%'!

(G'
%&

v')!
%

!(G'
%&

v')!
%

)&) (20)

The use of the tangent modulus in the constitutive equation is meant to be symbolic. For
inelastic models, the total strain increment, '&

&
, is input into a subroutine that determines the

appropriate split into elastic and plastic parts and the resulting stress increment [11]. If
the constitutive model contains path-dependent internal variables, these can be assigned to the
material points and also integrated in time, as necessary.

3.2. Membrane constitutive equation

A membrane is a thin structure that has no bending resistance and constant traction through its
thickness. The membrane is represented in the MPM by individual material points which
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Figure 3. (a) Physical membrane contour; and (b) material
point representation.

Figure 4. Local 2D co-ordi-
nate system for a material

point on the membrane.

collectively de"ne a membrane surface. Figure 3 illustrates the concept in two dimensions. Figure
3(a) shows a planar membrane contour and Figure 3(b) shows a material point discretization of
the membrane. The material points are overlaid on the Eulerian mesh. A single layer of material
points is used through the thickness of the membrane so the enforcement of constant traction
through the thickness is automatic. The membrane formulation in the MPM has been described
previously in Reference [13].

Recall that the momentum equation is being solved at the nodes of the Eulerian mesh. Thus,
the motion of the material points resulting from the solution of the momentum equation on the
grid must be consistent with the forces in the membrane and the geometry of the membrane. This
consistency is obtained by projecting the strain increment calculated for each material point
(Equation (13)) onto the local co-ordinate system of the membrane. This local system is de"ned in
two dimensions by the normal and tangent vectors, n

&
and t

&
(Figure 4). The local co-ordinate

system is determined using the numbering sequence of the membrane points. The points are
numbered consecutively along the membrane contour, and thus, neighbour points are easily
determined. With the neighbour points known, an approximation to the tangent and normal
directions to the membrane can be made.

In three dimensions, as with other methods, the membrane surface could be meshed, and the
connectivity of material points (nodes) on the mesh used to determine the local normal and
tangential co-ordinate system. Research is currently underway to eliminate the need for ordered
numbering of material points. The local co-ordinate system can be determined by de"ning the
membrane surface as an isosurface of a scalar function. The gradient of the surface function
results in the surface normal. Some promising results have been obtained, and will be reported in
a later paper.

After the tangent strain has been updated using the local co-ordinate system, the determination
of stress for a material point with linear elastic properties is straightforward. For example, if
a uniaxial membrane or string is assumed, this projection results in a stress component tangent to
the surface of the membrane, with all other components zero. The out-of-plane strains can be
adjusted to give either a uniaxial stress or plane stress formulation. The stresses are projected
back to the global co-ordinate system for the evaluation of internal forces (Equation (15)) which
are de"ned at grid nodes.
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3.3. Fluid constitutive equation

Here we give the speci"c constitutive equation and energy equation used to simulate problems
involving compressible #uids. The stress tensor for a #uid point is given as

#"2)&$ !#
$
) tr (&$ )I!p( I (21)

where I is the second-order unit tensor, ) is shear viscosity, &$ is the strain-rate tensor and p( is
pressure which is determined from an equation-of-state. Equation (21) assumes the Stokes
condition *"!(!

#
)) where * is bulk viscosity, and as a result, the static pressure (spherical

component of stress) is equal to the thermodynamic pressure.
To implement the #uid model, Equation (21) is applied at the material points. The strain rate

for a material point is computed by dividing Equation (13) by the time step. The equation of state
is for a polytropic gas where pressure, p( , is related to density and internal energy by

pL "(+!1)"e (22)

where e is speci"c internal energy, and + is the ratio of speci"c heats. The equation is applied at
each material point with density of a material point, "

&
, updated according to the continuity

equation (16). The contribution of the #uid stress to the internal force at a grid node is computed
in the same way as for a solid or membrane point (Equation (15)). The equation of state (22) is
dependent upon internal energy as well as density. Thus, the internal energy is updated for each
#uid material point every time step

e')!
&

"e'
&
##')!

&
'&R ')!

&
/"')!

&
(23)

It is well known that most numerical simulations of compressible-#uid shocks provide more
accurate results if some type of arti"cial viscosity is used at the shock front. The arti"cial viscosity
implemented in the MPM is similar to that described by Wilkins [25]. An additional term, q, is
added to the material point pressure under shock conditions as

q"(!c#maxg) "*I D!c!# c
#
(% ) v(

max (% ) v(" (24)

where

D"#% ) v
0

% ) v(0
% ) v'0

(25)

and c#max is the maximum sound speed in the #uid, g is a geometric constant proportional to the
mesh size, *, is an arti"cial bulk modulus, " is density, and c

!
and c

#
are constants. The variable

D de"ned in Equation (25) forces the arti"cial pressure q to be zero unless the material point is in
compression. Note that the divergence of the velocity is the trace of the strain-rate tensor.
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Figure 5. Sod's #uid shock propagation problem.

4. NUMERICAL EXAMPLES

Sample simulations of the MPM membrane}#uid interaction model are presented in this section.
First, a #uid-only, shock-tube problem demonstrates the algorithm for compressible #uids.
Next, three examples of simulations involving #uid}membrane interaction are discussed. A one-
dimensional piston-container problem tests the interaction of #uid and solid in the MPM.
A more stringent, two-dimensional test is presented next, where a pressurized, gas-"lled mem-
brane with complicated geometry is allowed to expand to its equilibrium circular shape. The last
example is a simulation of a probe impacting an in#ated airbag where comparison is made of the
MPM results, a similar "nite element calculation and experiments.

4.1. Simulation of shock propagation in a -uid (Sod 1s problem)

The objective of the simulation is to test the implementation of the MPM #uid formulation with
a problem that has an analytical solution. Sod investigated "nite di!erence schemes for simula-
tion of a shock propagating through #uids [26]. Sod's model problem consists of a shock tube
where a diaphragm separates two regions which have di!erent densities and pressures. Initially,
the regions have zero velocity. At time t"0, the diaphragm is broken. Figure 5 (top) illustrates
the initial conditions of the problem. The shock strength is de"ned as the ratio of p

#
/p

!
where

p
#

and p
!

are the pressures on either side of the shock. For this problem the shock strength is
approximately 3.0, which gives a shock speed of about 1.75. The shock is allowed to travel
a distance of 0.25, which it should do in 0.143 s. This is a one-dimensional problem, however, it is
solved with the MPM in two dimensions, and the solution variables are constant with respect to
the y (vertical) direction. A square background grid is used with 200"1 square elements of
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Figure 6. Results of Sod's problem simulation with the MPM.

dimension 0.005, and three material points are initially placed in each element, for a total of 600
material points.

The results of the MPM simulations are shown in Figure 6 with thin dark lines, and the
theoretical values are shown with thick grey lines. The simulation is performed with arti"cial
viscosity which smooths the oscillations at the shock front, but also smears the shock slightly. The
parameters for the arti"cial viscosity are, g"!2dx, *I "0.75, and c

!
"c

#
"1, where dx is the

length of a side of an element. All data are calculated and plotted at grid vertices except density
which is plotted at element centres. More sophisticated shock capturing methods would provide
sharper shocks; however, this simple approach su$ces to illustrate the capability of the MPM to
simulate compressible #uids. Shocks are not a signi"cant feature in the remaining #uid}structure
interaction problems discussed below.

4.2. Piston-container problem

The piston-container problem is a relatively simple one-dimensional problem. The objective of
this simulation is to test the #uid}structure interaction algorithm on a simple scale using a test
problem with a known solution.

An illustration of the piston-container #uid}structure problem is shown in Figure 7, and the
ideal MPM representation is shown in Figure 8. Since the problem is one dimensional the
membrane does not bend, and thus, resists compression the same manner as it resists tension.
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Figure 7. Piston-container problem.

Figure 8. Piston-container MPM simulation set-up.

The interaction between the #uid and structure (spring) occurs only at the single interface
between the di!ering materials. At this interface, the #uid and structure stresses contribute
internal forces for the solution of the momentum equation. A similar #uid}structure problem is
presented by Olson [27].

A massless spring of constant K and length ¸ is attached to a piston. The piston can move without
friction to compress or expand a compressible #uid of density " and bulk modulus -. The objective is
to compare the theoretical frequency of vibration with that from an MPM simulation.

The #uid is assumed to be compressible, inviscid, and adiabatic. The continuity, energy, and
constitutive relations combine to give the relationship between pressure and displacement as follows:

p"!-(% ) U) (26)

where ; is displacement and - is the isentropic bulk modulus. The analytical expression for the
natural frequency, ., of vibration of the mass satis"es the equation

.!![K#".cA cot (.¸/c)]/m"0 (27)

where c is the wave speed !-/", m is the piston mass, and A is the piston cross-sectional area.
The parameters used in the MPM simulation are as follows: ¸"20, A"1.0, K"100,

""0.0001, -"1.58"10(, and m variable. The spring is modelled with a linear elastic
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Figure 9. Mass (Piston) de#ection in the piston-container simulations.

Table I. Piston-container periods of vibration.

Mass, m
Theoretical
. (rad/s)

Theoretical
period (s)

MPM simulation
period (s)

0.1 886.2 0.00709 0.0071
1.0 281.2 0.02234 0.022

constitutive model so that it also has resistance in compression. The points making up the
one-dimensional membrane or spring have a small mass compared to the heavy material point at
its end, which has a mass 100 times that of other material points. To determine the frequency of
vibration, the heavy material point representing the piston is given a small initial velocity, and the
position of this material point is monitored.

The "rst solution of Equation (27) gives the fundamental mode of vibration. Table I lists the
theoretical natural frequency and period for two di!erent piston masses along with the period
observed in the MPM simulation. The observed periods are very close to the theoretical ones.
Figure 9 shows the time history of displacement of the mass. The vertical dashed lines in the plot
represent the theoretical periods of vibration.

4.3. Membrane expansion

A membrane with an arbitrary initial con"guration and a #uid with an initial pressure will evolve,
with viscous dissipation, to an equilibrium shape of a sphere or a circle in two dimensions. Here
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Table II. Fluid and membrane properties.

Fluid property Value Membrane property Value

Density 1.0 density 0.5
Viscosity, ) 0.2 Young's modulus 1"10(
Initial speci"c internal energy, i 250 Poisson's ratio, / 0.3
Ratio of speci"c heats, + 1.4
Arti"cial viscosity o!

Figure 10. Initial conditions for the dog-bone membrane expansion simulation.

an initial dog-bone shape has been chosen as a severe test for the MPM. The dog-bone-to-
cylinder membrane expansion simulation is an arbitrary problem (not seen in the literature) that
tests several aspects of #uid}structure interaction. The initial conditions for the problem are
shown in Figure 10, and the problem parameters are listed in Table II. A computational element
size of 0.1 is shown in the "gure; a total of four di!erent element sizes were used.

The problem consists of a gas under internal pressure which expands "lling a cavity that is
initially dog-bone shaped. A membrane forms the cavity and con"nes the gas. At early times, the
membrane oscillates due to unbalanced forces. Since the #uid is given a non-zero viscosity
coe$cient, the membrane oscillations are damped until a steady-state condition is reached.

There are several areas where this problem can be compared to theory. Some of these are as
follows:

(1) the gas should not escape from the membrane,
(2) the equilibrium shape of the membrane should be circular,
(3) the stress in the membrane should be consistent with the internal pressure.

Table III lists some of the results of the four simulations that were performed. The simulations are
more re"ned going from 1 to 4 as indicated by the element or mesh size in the second column.
Square elements are used. The last two columns show the "nal average pressure and average
radius of the membrane. The "nal radius of the membrane appears to converge with mesh
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Table III. Membrane expansion simulation parameters
and results.

Simulation element size
Final

radius*
Final internal

pressure*

1 0.4 1.07 50.3
2 0.2 1.33 28.8
3 0.1 1.35 31.2
4 0.05 1.36 31.7

*Calculated by averaging values at material points.

Table IV. Comparison of hoop stress.

Simulation
Hoop
stress*

Hoop stress-
simulation! % Di!erence

1 539 101 !81.3
2 385 399 3.6
3 420 400 !4.8
4 443 433 !2.3

*Hoop stress, pr/t, is calculated using the "nal radius and pressure from
Table III with thickness equal to 0.1.
!Average of material point membrane stress.

re"nement as does the "nal internal pressure. The higher "nal pressures of the more re"ned
simulations are consistent with less energy dissipation observed in the plots of the total energy.

Table IV is a comparison of the theoretical hoop stress with the hoop stress observed in the
simulations. The theoretical stress is calculated with the "nal radius and pressure from Table III.
There is roughly a 2}5 per cent di!erence between the theoretical value and the simulation value,
neglecting the overly coarse simulation. One source of error arises from the fact that the forces are
calculated at grid nodes, and the radius used for the hoop stress calculation in the "rst column is
based on material point locations.

Figures 11}13 illustrate the detailed results of the most coarse and most re"ned membrane
expansion simulations. For each simulation, the material point positions during the initial
oscillations are shown along with the shape at steady state. Following this is a plot of the
membrane radius as a function of time, measured at 0 and 903 from the horizontal axis, and a plot
of the energy.

4.3.1. Simulation 1. Simulation 1 is the coarsest simulation with an element size of 0.4. Figure 11
shows the material point locations at increasing times. The simulation is so coarse that the folds
or wrinkles in the membrane cannot be pulled out to a circular shape at equilibrium. However, it
can be seen that gas does not escape the membrane and that the membrane shape does move
toward a circular shape although the circular shape is not achieved.

Time-history plots of the radius at 0 and 903 show that the radii di!er by 0.2 at the steady state,
corresponding to the noncircular shape in Figure 11. The time history is also somewhat noisy.
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Figure 11. Material point position plots for simulation 1.

Kinetic energy and potential energy for both the #uid and the membrane are also monitored, as
well as the total energy. On the coarse mesh, about 1.5 per cent of the total energy is lost due to
numerical dissipation. The trends observed during mesh re"nement are: (i) the "nal shape of the
membrane becomes more circular, (ii) oscillations during the approach to steady state are
smoother, and (iii) there is less energy dissipation.

4.3.2. Simulation 4. Figure 12 shows the material point locations at increasing times for the
simulation with the highest resolution (mesh size 0.05). The "nal time (t"4) is shown larger for
clarity. The membrane lines are smooth, and the general shape is approximately the same as in
the simulation with mesh size 0.01 (not shown). The same applies to the radii and energy as seen in
Figure 13. There is a 0.03 per cent increase in the total energy during the simulation, and the
oscillations in the radii are smooth and are converging to the same value, indicating a "nal
circular shape.

4.4. Airbag impact simulation

Axisymmetric calculations of a cylindrical probe impacting an in#ated airbag were performed
and reported by de Coo [28]. The calculations were compared to experimental results.
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Figure 12. Material point position plots and pressure contours for simulation 4.

A schematic of the problem is shown in Figure 14. The horizontal axis at the bottom of the "gure
is a symmetry axis for cylindrical coordinates. The MPM is used to simulate one of the
experiments reported by de Coo where the diameter, mass, and impact velocity of the cylindrical
probe were varied. The parameters of the simulation are listed in Table V. Material properties for
the simulation are listed in Table VI.
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Figure 13. Radii and energy for membrane expansion simulation 4.

Figure 14. Airbag impact problem. Figure 15. Initial con"guration with
the internal tether.
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Table V. Airbag impact simulation parameters.

Cylinder (probe)
diameter (mm)

Cylinder
mass (kg)

Cylinder initial
velocity (m/s)

200 6.03 3.90

Table VI. Airbag impact simulation*material properties.

Airbag property Value Air property Value

Thickness 0.5 mm Speci"c heat ratio 1.4
Density 662 kg/m3 Density 1.2156 kg/m$
Young's modulus 6"10) N/m# Initial pressure 4000 N/m#
Poisson's ratio 0.4 Initial speci"c internal energy 8226 J/kg

Material properties of the cylinder were not listed. Therefore, Young's modulus was arbitrarily
chosen to be 5"10) N/m#, and the density was adjusted to give the correct mass. The total airbag
mass was derived to be 367.2 g.

The initial positions of the membrane material points for this simulation were arrived at by
conducting a simulation with a tether in the airbag. The initial positions of the material points are
shown in Figure 15. This con"guration was allowed to come to approximate equilibrium and the
resulting airbag shape was used as the initial shape for the simulation of the probe impact. The
objective of this exercise was to obtain an initial shape that matches that reported by de Coo.

The plots of the probe and airbag material point positions for various times during the
simulation are shown in Figure 16. The e!ect of using the tether to determine initial material
point positions is seen in the "rst plot of Figure 16. The tether pulled the material to the left
(indicated by the arrow in the top left plot).

For the simulation with the probe, the tether was removed at the instant the simulation was
started because in the axisymmetric MPM calculation this tether is actually a conical shape and
a!ects the #ow of the gas material points. There were approximately 3000 material points
representing the gas. These are not shown in Figure 16 to increase the clarity of the airbag shape.
The predicted con"guration of the airbag and impactor look plausible. As the impactor moves to
the left, it depresses the airbag, causing the airbag to bulge out in response. The probe slows after
impact, eventually stops and then rebounds to the right.

Figure 17 shows a comparison of the displacement of the probe into the airbag for the MPM
simulation, the PISCES simulation and the experiment [28]. Figure 18 shows that the deformed
airbag shapes at t"40 ms are similar. The slope of the displacement past the peak in Figure 17
di!ers from that displayed by the experimental data. It is thought that the e!ect of not simulating
the tether may cause a more rapid rebound of the impactor since the airbag expansion is not
restrained. To test this theory, a simulation was conducted where the tether was left in the
simulation for the duration. It was observed that the slope past the peak closely matched that of
the experiment, which did incorporate a tether. However, the cylinder displaced about 20 mm
farther into the airbag. This excessive displacement is attributed to the interference of the tether
with the gas #ow.
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Figure 16. Deformed airbag shapes.

An alternative to modelling the tether with material points would be to prescribe a force}
displacement relationship between two material points. The force}displacement relationship
could be that of a spring or bar to represent the tether, but in general could take any form. This
force would be interpolated to the grid at the two particle locations and included as an external
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Figure 17. Displacement results for
the cylindrical probe.

Figure 18. Comparison of PISCES and MPM
deformed con"guration for t"40 ms.

force in the solution. In principle, this method would be equivalent to that described above, but
would have the advantage of not interfering with the gas particles.

5. CONCLUSIONS

The material point method uses Lagrangian material points and an Eulerian or spatial mesh to
de"ne the computational domain.The material points move through the Eulerian mesh, on which
the momentum equation is solved. A review of the equations is given as they are developed for
general solid materials, membranes and compressible #uids. This paper presents the modi"ca-
tions necessary to simulate the interaction of thin membranes and compressible #uids.

Several test problems are presented to demonstrate the methodology. A #uid-only shock tube
problem is used to test the compressible #uid model, and a one-dimensional piston-container
problem validates the implementation of #uid}membrane interactions. Both of these problems
have analytical solutions that are used for comparison with the numerical results. Two more
complex simulations of a gas-"lled pressurized membrane and of a probe impacting a pre-in#ated
airbag show the potential of the method. These last two problems are two dimensional and
involve complicated geometry that is easily represented by the material points. In addition, the
airbag problem has also been solved using "nite elements and experimental measurements have
been made, both of which compare well with the MPM results.

The treatment of the interface between the #uid and membrane is simple in the MPM and
avoids the time-consuming computations necessary in many methods. One major advantage to
this approach is that meshing bodies is trivial. Since points only have to be identi"ed that are
inside a body or on membrane surface, the potentially expensive process of meshing with
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standard "nite elements is avoided. Other advantages are that the constitutive equations are
easily changed, and the algorithm runs on a PC or workstation, but can be easily parallelized for
more powerful machines and larger problems.
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